

Perspective on Radionuclidic Purity Methods

Miguel Toro Gonzalez, PhD
Senior Radiochemist at NorthStar Medical Radioisotopes
Mirion Connect 2025

Proprietary & Confidential

Radiopharmaceutical lifecycle

Radioisotope production facility

55 acre Campus Designed with a Purpose

NorthStar is the first and only U.S. company housing commercial-scale, multi-radioisotope production and radiopharmaceutical

Photo taken May 2025

©2025 NMR. All rights reserved.

Agenda

- Radionuclide Production
- Quality Target Product Profile
- Radionuclidic Identification and Purity Methods
- Challenges and Opportunities

Radionuclide Production

- Radionuclide production
 - > Fission
 - > Neutron activation
 - > Charged-particle induced reactions
 - > Generators
- Radionuclide separation and purification
 - > Physical processes
 - > Chemical processes

Quality Target Product Profile

Radionuclidic Identification Methods

Comparison with radioisotope spectrum having a known purity (<3% of radionuclidic impurities*) using the same instrument and configuration

Challenging with short-lived radioisotopes

Measure nuclear decay scheme parameters (half-life, photopeak energy, and abundance of emissions) within ± 10% of reported value*

- Commonly used in radioisotope production
 - Agreement of 2 or more parameters

Radionuclidic Identification Methods

Half-life — successive counting of radioisotope over a period that is long enough compared to its half-life

Measuring ²²⁵Ac half-life based on ²¹³Bi 440 keV photopeak within ± 10% of reported value of 9.917 d

-1.5			Data Regression Line
- 2.0 -			
-2.5 - -3.0 -		•	
LN –3.0 -			
-3.5			
-4.0			
	10 20 Ti	30 me (d)	40

Radionuclide	213 Bi
Α ₀ (μCi)	20.35
Half-life (d)	10.04
Unc Half-life	0.028
%Error	1.24

Radionuclide	213 Bi
Α ₀ (μCi)	0.36
Half-life (d)	9.90
Unc Half-life	0.022
%Error	-0.225

Radionuclidic Identification Methods

Nuclear emissions (energy and abundance) — transition energies match those in decay scheme, whereas the area under each photopeak is proportional to the abundance after correction for detector system efficiency

Representative spectrum of ²²⁵Ac in secular equilibrium with its daughters

Some of the ²²⁵Ac used in this research was supplied by the U.S. Department of Energy Isotope Program managed by the Office of Isotope R&D and Production

Radionuclidic Purity Methods

"Fraction of radioactivity attributable to the desired radionuclide in the total radioactivity measured"

$$\frac{AA_{xx}}{AA_{xx} + AA_{iiiii}} \times 100$$

Lower radionuclidic purity can:

- Cause deviations in the prescribed radioactivity concentration
- Increase the dose delivered to healthy organs (i.e., side effects)
- Influence quality control
- Impact regulatory compliance

Radionuclidic Purity Methods

- Influenced by production route
 - > Target material
 - > Competing reactions
- Influenced by separation and purification scheme
- For radionuclide generators can be defined as breakthrough of parent radionuclide
- Must meet compendial standards (e.g., USP; Ph. Eur.; international monographs)

²²⁵Ac from ²²⁹Th generator

```
Th (A<sub>imp</sub> T_{1/2} = 7907 y) → α emissions (4.8-4.9 MeV)

γ emissions (88.5 keV, 23.9%; 193.5 keV, 4.4%)

<sup>225</sup>Ra (A<sub>imp</sub> T_{1/2} = 14.8 d) → β- emissions (E<sub>max</sub> = 316 keV, 68.8%; E<sub>max</sub> = 356 keV, 31.2%)

γ emissions (40 keV, 30.0%)

<sup>225</sup>Ac (A<sub>x</sub> T_{1/2} = 9.917 d) → alpha emissions (5.9 MeV, 52.4%)

γ emissions (150.0 keV, 0.8%; 187.9 keV, 0.58%)

<sup>221</sup>Fr (A<sub>x</sub> T_{1/2} = 4.9 min) → γ emission (218.1 keV, 15.6%)

<sup>213</sup>Bi (A<sub>x</sub> T_{1/2} = 45.6 min) → γ emission (440.4 keV, 30.8%)
```


Representative spectrum of ²²⁵Ac in secular equilibrium with its daughters

Some of the ²²⁵Ac used in this research was supplied by the U.S. Department of Energy Isotope Program managed by the Office of Isotope R&D and Production

Proprietary & Confidential

Equipment: a conventional coaxial germanium detector with energy range from 40 keV to >10 MeV and a integrated alpha spectrometer

- Identify 100, 193.5, and 210.9 keV
 ²²⁹Th peaks
 - Minimum detectable activity in the presence of nCi to µCi levels of ²²⁵Ac
- Identify low energy (4.8-4.9 MeV) α particle emissions
 - Quantitative measurement of ²²⁹Th

Is there consensus between ²²⁵Ac producers from ²²⁹Th generators?

>99.9% vs. >99.7%

Typically requires decommissioning plan, environmental monitoring, and emergency planning in accordance to regulatory authorities

Main radionuclidic impurity: $(227 \text{Ac} (T_{1/2} = 21.7 \text{ y}))$

$$(227 \text{Ac} (T_{1/2} = 21.7 \text{ y}))$$

²²⁵Ac from spallation ²³²Th(p, spall)²²⁵Ac

The % impurity of ²²⁷Ac increases with time due to difference in half-lives

21.7 y vs. 9.9 d

²²⁷Ac has gamma emissions with relatively low emission probability (i.e., gamma silent)

Other radionuclidic impurities:

²²⁵Ra, radiolanthanides, light nuclides (spallation products)

Direct measurement based on <2% alpha decay chain or low beta emission

Indirect measurement through decay daughters

In growth of ²²⁷Ac daughters with time

Indirect measurement through decay daughters

Methods:

- Alpha and/or gamma spectroscopy of ²²⁷Th and ²²³Ra
 - > Slow ingrowth of ²²⁷Th and ²²³Ra
 - > Activity of ²²⁵Ac
 - > Quantification of low activity levels in the presence of ²²⁵Ac

Performed on validation batches, not for routine production and/or release

Decay scheme of ²²⁷Ac

Image from https://www.chemlin.org/isotope/actinium-227

Direct measurement based on <2% alpha decay chain or low beta emission

Methods:

- Alpha spectroscopy of 5.02 MeV (I% 0.55) and 5.04 MeV (I% 0.66) from ²²⁷Ac
 - > Potential interferences: 5.0 MeV (I% <0.0015) from ²²⁵Ac
- Gamma spectroscopy of 50 keV (I% 33) and 234.7 keV (I% 2.7)
 - > What is the minimum detectable activity in the presence of ²²⁵Ac?
 - Low contribution to gamma spectrum

²²⁵Ac from ²²⁶Ra* ²²⁶Ra(p, 2n)²²⁵Ac ²²⁶Ra(γ , n)²²⁵Ra \rightarrow ²²⁵Ac Direct ²²⁵Ac production from ²²⁶Ra

Potential radionuclidic impurities*

- > 226Ac and 226Ra
- Indirect ²²⁵Ac production by a ²²⁵Ra/²²⁵Ac generator

Potential radionuclidic impurities*

- > 227Ac
- > 226Ra and 225Ra (i.e., Ra breakthrough)

Direct ²²⁵Ac production from ²²⁶Ra

Decay scheme of ²²⁶Ac

Image from https://www.chemlin.org/isotope/actinium-226

Target allowed to decay for at least 3 d, leading to significant decay of ²²⁵Ac (~20% of activity loss)* Gamma spectroscopy:

²²⁶Ac (β-)
$$\rightarrow$$
 158 keV (I% 17.5), 230 keV (I% 26.9)
²²⁶Ac (EC) \rightarrow 185 keV (I% 4.8), 253 keV (I% 5.7)
²²⁶Ra (α) \rightarrow 186 keV (I% 3.6%)

- ²²⁶Ra > 1 μCi requires general licensing according to 10 CFR 31.12(a)(2)
- ²²⁶Ra is a bone seeker radionuclide
- Presence of ²²⁶Ac in ²²⁵Ac API, what is the limit?

*M. Tosato, et al., Alpha Atlas: Mapping global production of α-emitting radionuclides for targeted alpha therapy, Nuclear Medicine and Biology (2024), **DOI**

 Indirect ²²⁵Ac production by a ²²⁵Ra/²²⁵Ac generator

In growth and elution of ²²⁵Ac from ²²⁵Ra with a 7-d frequency

Discard initial ²²⁵Ac/²²⁷Ac fraction*

Gamma spectroscopy:

²²⁵Ra (β-) \rightarrow 40 keV (I% 30), 230 keV (I% 26.9)

 226 Ra (α) → 186 keV (I% 3.6%)

*M. Tosato, et al., Alpha Atlas: Mapping global production of α-emitting radionuclides for targeted alpha therapy, Nuclear Medicine and Biology (2024), **DOI**

 Emission properties of trace contaminants in the presence of an overwhelming field of X radioisotope

Minimum Detectable Activity
Maximum Potential Percent Impurity

Lack of or low characteristic emissions

For example ²²⁷Ac in ²²⁵Ac API

Figure from Mirion Application Note

 Emission properties of trace contaminants in the presence of an overwhelming field of X radioisotope

Size exclusion and paper chromatography are used to separate trace contaminants from high activities of the desired radionuclide*

 Consideration of half-life for radionuclidic purity—desired radionuclide versus impurities—time sensitive methods

Total of all other gamma-emitting radionuclides 0.5 µCi per 1 mCi 99mTc at time of administration

No More Than*:

- $-0.15 \mu \text{Ci}^{99} \text{Mo} (T_{1/2} = 66 \text{ h}) \text{ per 1 mCi}^{99} \text{mTc} (T_{1/2} = 6 \text{ h})$
- $-0.05 \mu \text{Ci}^{131} \text{I} (\text{T}_{1/2} = 8 \text{ d}) \text{ per 1 mCi}^{99\text{m}} \text{Tc} (\text{T}_{1/2} = 6 \text{ h})$
- $-0.05 \mu \text{Ci}^{103} \text{Ru} (T_{1/2} = 39 \text{ d}) \text{ per 1 mCi}^{99\text{m}} \text{Tc} (T_{1/2} = 6 \text{ h})$
- $0.0006 \mu \text{Ci} \, ^{89}\text{Sr} (T_{1/2} = 52 \text{ d}) \text{ per 1 mCi} \, ^{99\text{m}}\text{Tc} (T_{1/2} = 6 \text{ h})$

Isotope specific

18 F			
Ph. Eur	99.9%		
USP	99.5%		

^{99m} Tc			
Ph. Eur	99.88%		
USP	99.935%		

90Sr is a bone seeker radionuclide
 Maximum Permissible Body Burden
 2 μCi**

The half-life limits how far the radioisotope can be shipped \rightarrow 90Y (64 h), ¹⁸Fr (110 m), ²¹³Bi (45 min)

Methods for radionuclidic purity cannot always be adapted to a hospital or pharmacy*

^{*}IAEA-TECDOC-1856 Quality control in the production of radiopharmaceuticals **IAEA — Technical Reports Series No. 470

- General guidelines
 - > The International Pharmacopoeia
 - Recommended procedures and specifications as source material for reference or adaptation of any World Health Organization Member State
 - 26 specific monographs for radiopharmaceuticals
 - > European Directorate for quality of Medicines EDQM
 - Various monographs dealing with radiopharmaceuticals
 - Monographs specify a radionuclidic purity >99.9%*
 - Specific radionuclide precursor monographs (18F, 123I, 111In, 177Lu, 90Y, 68Ga, etc.)
 - > USP Monographs
 - > NRC 10 CFR: 35.204 Permissible molybdenum-99, strontium-82, and strontium-85 concentrations

Radionuclidic methods must be developed and tested for:

Limit of detection

$$IIIIIL = \frac{3 \times \sqrt{BB}}{P}$$

Limit of quantification

$$IIIIIL = \frac{10 \times \sqrt{B}}{P}$$

Minimum detectable activity

$$MMA = \frac{IIIIIL}{E \times F}$$

B: background count rate

t: count time

ε: counting efficiency

F: conversion factor

Specificity

Ability to unequivocally measure the radionuclide of interest (i.e., photopeak energy within ±3 keV)

Energy and efficiency calibration using NIST traceable mixed gamma standard

		UNIDENTIFIED PEAKS						
		Peak	Locate Performed on Locate From Channel Locate To Channel	: 3/21/2024 6:18:38PM : 1 : 8192				
			Negative not need t	peak size, do to ident if y				
		Peak No.	Energy (keV)	Peak Size (CPS)	Peak CPS (%) Uncertainty	Peak Type	Tolerance Nuclide	
	100	1	20.77 69.50	2.08891E+00	1.72			
		1 2 3	81.27	2.02607E+00 -7.26997E-05	3.90 -67156.12			
		6	108.41	1.90234E+00	3.51			
		7 8	127.46 h	-3.54164E-02 4.86521E-01	- 92.70 11.83	Tol.	Ni-57	
	m	10	187.44	3.38144E-01	2.57	Sum		
Flagged as	ŀ	1 12	275.93	2.12978E-02	10.89	Sum		
multiplet, do	п	13	277.87	4.66855E-02	6.26	Sum	Flagged as	
not need to	16	15	369.11	4.50466E-02	7.44	Sum .	sum, do not need to	
identify	- 62	17	1460.65	3.93634E-03	20.23	2007-0-1	identify	

Representative Apex Gamma report highlighting unidentified peaks

Summary

- Radionuclidic identification and purity methods are important from the perspective of patient/operator safety and regulatory compliance.
- Guidelines for radionuclidic purity are radioisotope dependent, only established radioisotopes have well-defined purity requirements.
- Radionuclidic purity methods need to be adjusted to each radioisotope and production route. No one size fits all, however, purity requirements should be the same.
- Continuous development and improvement of radionuclidic purity methods can benefit all.

Acknowledgements

 NorthStar Medical Radioisotopes

> Radiochemistry and Analytical Laboratories Team

- Mirion Technologies
- Some of the ²²⁵Ac used in this research was supplied by the U.S. Department of Energy Isotope Program managed by the Office of Isotope R&D and Production.

References

- USP Monographs
 - > Sodium Pertechnetate Tc 99m injection
 - > (821) Radioactivity
 - > (1821) Radioactivity-Theory and Practice
- IAEA-TECDOC-1856 Quality control in the production of radiopharmaceuticals
- IAEA Technical Reports Series No. 470
- The International Pharmacopoeia, Twelfth Edition
- M. Tosato, et al., Alpha Atlas: Mapping global production of α-emitting radionuclides for targeted alpha therapy, Nuclear Medicine and Biology (2024), DOI
- Gillings et al., EANM guideline on the validation of analytical methods for radiopharmaceuticals, EJNMMI Radiopharmacy and Chemistry (2020) DOI

What questions do you have?

