

INNOVATION AT WORK

Connecting Visionaries in Radiation Safety, Science and Industry

Conrad Orlando Resort, FL – July 28th – August 1st

HPGe Detector updates The iPA II preamplifier The CP5-Plus cryocooler

Dieter Pauwels

Product Line Manager Standard HPGe Detectors

Mirion Connect | Annual Users' Conference 2025 Orlando, Florida

Agenda

- Introduction of the iPA II preamplifier
 - What is new?
 - How will it make your life easier?
- The CP5-Plus electrically refrigerated cryostat
 - Some basics
 - How does it make your life easier?

Basics of HPGe detectors

Introduction: the four HPGe detector building blocks

Germanium detector

- Absorb and convert gamma-ray energy into proportional amount of electron-hole pairs
- Collect electrons and holes at detector contacts
- Detector preamplifier
 - Convert number of holes and electrons to a proportional voltage pulse
 - Access to <u>detector/cryostat/preamp</u> State-of-Health (SoH) information
- Detector cryostat
 - Vacuum chamber for thermal and electrical isolation
- Cooler
 - · Cooling source for the germanium detector

LN2-cooled vertical dipstick cryostat

Preamp provides critical SoH info

SoH parameter	Short description	Importance / Indicative for
Detector leakage current	Leakage current	Diode issue? Vacuum issue? Preamp/cabling issue? FET broken?
PRTD1	HPGe temperature	HV ready? Vacuum issue?
PRTD2	Cold-tip temperature	HV safety? Cooler issue?
Ambient Temperature	Electronics temperature	Ambient temperature issue?
LN2 level	LN2 level	Vacuum issue?

The HPGe Signal Chain

- Preamplifier
 - Detector Pulse processing
 - (HPGe/Cryostat SoH)
- Cooler controller
- Multi-Channel Analyzer (MCA)
 - Detector signal analysis
 - Spectral information storage
- User Interface
 - Genie / Apex

HPGe detector operation: what does it take?

Annual Users' Conference

Set up Installation/Cabling/cooling down HW parameter settings (Troubleshooting) Energy range Energy/Shape calibration Efficiency calibrations Acquisition settings Analysis settings

Maintenance

(LN₂ refilling) QA/QC measurements QA/QC reviews (Troubleshooting)

Operation

Sample measurement Data Review/Interpretation (Troubleshooting) 🎉

HPGe detectors require a lot of human expertise to

- Set up
- Maintain
- Operate
- How can Mirion make the user's life easier?

Innovation at Work

© 2025 Mirion Technologies. All rights reserved.

How can Mirion make HPGe life easier?

How?	What is needed?	
100% electric cooling solution (w/o impact on detector performance)	Reliable / Low-vibration electric cryocooler	
Automate QA/QC program		
Ensuring the detector <u>is</u> healthy (State-of-Health monitoring)	Digital access to SoH data Digital access to detector-specific settings/performance data	
Ensuring the detector <u>will be</u> healthy (Predictive Maintenance)	Smart algorithms	
Automate set up procedure	Digital access to detector-specific settings/performance data Basic use-case input Smart algorithms	
Get rid of cabling	Integrated system	

Introducing the iPA II preamplifier

What is iPA II?

- RC-feedback preamplifier solution for Mirion HPGe detectors:
 - Analog pulse processing on Analog Electronics Module (AEM) board:
 - Kept pulse processing logic that was optimized on the 2002C preamplifier
 - Standard solution for ~95% of all standard Mirion HPGe detectors
- Digital backend (as introduced with iPA):
 - Connecting AEM to Digital Electronics Module (DEM) Board
 - Interface through USB
 - Enabling continuous and remote SoH monitoring, not requiring:
 - Multimeter;
 - LN2 NIM electronics
 - Easy access to recommended detector setup parameters
- New with iPA II:
 - New feature: Local storage of detector-specific data
 - Quality and serviceability improvements

All in same footprint as the old analog 2002C preamplifier

Enable data-driven/remote troubleshooting

Enable predictive maintenance

Improve ease of use

iPA II stores Detector-Specific Data

- Users can access user-accessible PDF files with Lynx II(*):
 - Detector outline drawing
 - Detector spec sheet
 - HPGe Manuals and Application Note
 - ISOCS characterization reports
- Files only accessible by Service:
 - Factory iPA II config file
 - ISOCS characterization data
 - Data for adequate detector QA/QC and troubleshooting: e.g., reference CNF files
 - (*) FW V1.2 is required to view and download all iPA II PDF files. Service has access to all files stored on the iPA II.

iPA (II) Monitoring and Control with the Lynx II MCA

- USB connection to Lynx II
- Access via the Lynx II web client UI
 - Common platform for:
 - MCA
 - iPA or iPA II
 - CP5-Plus or iCC

iPA II Feature	V1.0	V1.1	V1.2
Continuous Data Monitoring			
Settings control			
FW management	0	/	
Real-Time SoH log file			
Access to iPA II PDF files	0	0	/

Innovation at Work

 $@\ 2025\ Mirion\ Technologies$. All rights reserved.

How can Mirion make HPGe life easier?

How?	What is needed?
100% electric cooling solution (w/o impact on detector performance)	Reliable / Low-vibration electric cryocooler
Automate QA/QC program	
Ensuring the detector <u>is</u> healthy (State-of-Health monitoring)	Digital access to SoH data Digital access to detector-specific settings/performance data
Ensuring the detector <u>will be</u> healthy (Predictive Maintenance)	Smart algorithms
Automate set up procedure	Digital access to detector-specific settings/performance data Basic use-case input Smart algorithms
Get rid of cabling	Integrated system

iPA II stores Detector-Specific Data

- Users can access user-accessible PDF files with Lynx II(*):
 - · Detector outline drawing
 - Detector spec sheet
 - HPGe Manuals and Application Note
 - ISOCS characterization reports
- Files only accessible by Service:
 - Factory iPA II config file
 - ISOCS characterization data
 - Data for adequate detector QA/QC and troubleshooting: e.g., reference CNF files

The iPA II preamplifier has a local storage of all relevant HPGe-specific data and documentation.

The iPA II preamp and Lynx II MCA are the backbone of the future-proof HPGe detection system.

Other iPA II Improvements (vs iPA)

Feature	Benefit	iPA	iPA II
Integrated USB isolator Note: with USB-C connector	Easier installation, cleaner setup	Mini-B connector:	C connector:
Longer Slimline pig tails	Easy access to connectors:	10-inch pigtail cables	20-inch pigtail cables
Slimline units delivered with firmly fixed USB cable	also in lead shields and for Slimline MAC/CP5-PLUS		

Other iPA II Improvements (vs iPA)

Feature	Benefit	iPA	iPA II	
HV network on potted PCB	More rugged against arcing and ESD			
Enhanced AEM board protections	LOD			
Flexible power-up logic	MCA-USB power-up sequence independent of order	1 st : preamp power 2 nd : USB power	Redesigned power management board logic	
Firmware AEM communication bug fix	Continuous visibility to all SoH parameters	Bug: possible communication loss with AEM board Recovery: reboot preamp	FW fix in AEM (V4160) and DEM (V2.0) FW versions	
		Fix: Install iPA II AEM/DEM FW	Backward compatible with iPA	

iPA II Summary

- iPA II:
 - Maintaining excellent 2002C low-noise detector pulse processing performance
 - Maintaining iPA digital backend enabling continuous and remote SoH monitoring
 - Adding the capability to store detector-specific files
 - Improving quality and serviceability
- Basic detector operation is compatible with standard HPGe MCA models
- Detector-specific data are only accessible by the Lynx II MCA:
 - Lynx II FW V1.1 (and later): hardware parameter monitoring of detector, preamplifier and cryocooler
 - Lynx II FW V1.2 (and later): view and download all iPA II PDF files (spec sheet, manuals, reports)
 - Future Lynx II releases can leverage iPA II stored detector information for automated algorithms
- Combination of iPA II preamplifier and Lynx II MCA is Mirion's future-ready hardware platform

The CP5-Plus electrically refrigerated cryostat

The difference between Stirling and Pulse Tube

Compressor: cycles of compression (gas warming up) and decompression (gas cooling down)

	Stirling cold finger	Pulse tube cold finger
What?	Mechanical gas displacement with mass-spring system Flexure Piston Piston Flexure Cold tip Displacer with regenerator Compression spring Warm end	Gas displacement results from flow resistance in inertance tube and buffer tank Gas displacement results from flow resistance in inertance tube and buffer tank Gold tip Gold

The difference between Stirling and Pulse Tube

Compressor: cycles of compression (gas warming up) and decompression (gas cooling down)

	Stirling cold finger	Pulse tube cold finger	
What?	Mechanical gas displacement with mass-spring system Flexure Piston Piston Flexure Cold tip Displacer with regenerator Compression spring Warm end	Gas displacement results from flow resistance in inertance tube and buffer tank Cold tip Pagnardaxa Itaark - Tolo 25 Buffer tank With inertance tube Warm end	
Advantages	Efficient (direct gas displacement)	No vibrations (no moving parts in cold tip) No mechanical wear	
Disadvantages	Vibrations => microphonics noise Mechanical wear	Less efficient => larger/heavier system	

Mirion Standard Detector Cooling Solutions

- Cryo-Cycle cooler
 - LN2-redundant cryocooler system
 - Stirling technology
 - Very reliable (based on >500 units since 2021)
 - CP5-PLUS compressor
 - Expected cooler MTTF: >200K hours
 - Expected cooler lifetime: >7 years
- CP5-Plus cooler
 - Completely LN2 free
 - Nominal power consumption: ~100 W
 - Pulse-Tube technology
 - Extremely reliable (based on >3,300 units since 2006)
 - Cooler MTTF > 6M hours, System MTTF > 1M hours (repairable items)
 - Cooler Lifetime >>15 years, only 5% system failure probability within 1st 7 years
 - Lowest vibration levels => no microphonics impact

Hybrid cooling: Intelligent Cryo-Cycle cryostat

Electric cooling: CP5-PLUS cryostat

CP5-Plus vs LN₂-based system: cost comparison

	CP5-PLUS	LN ₂ based
Investment cost	Large (+ ~\$45k)	Small
Operational cost	Small Electricity: ~100 W => ~875 kWh/y	Large (+ ~\$9k/y) LN2 consumption and rental costs Labor (preparations, filling, handling) Down time during filling (Cost of safety)

Interest rate: 8%

Inflation rate: 3%

• CP5-PLUS life time: 15 years

Payback period: 6.0 years

Net Present Value: 47,200 USD

ROI analysis CP5-plus vs LN₂

How can Mirion make HPGe life easier?

How?	What is needed?
100% electric cooling solution (w/o impact on detector performance)	Reliable / Low-vibration electric cryocooler
Automate QA/QC program	
Ensuring the detector <u>is</u> healthy (State-of-Health monitoring)	Access to SoH data Access to detector-specific settings and performance data
Ensuring the detector will be healthy (Predictive Maintenance)	Smart algorithms
Automate set up procedure	Access to detector-specific settings and performance data Basic use-case input Smart algorithms
Get rid of cabling	Integrated system

Annual Users' Conference

CP5-Plus Monitoring with the Lynx II MCA

- USB connection to Lynx II
- Access via the Lynx II web client UI
 - Common platform for:
 - MCA
 - iPA or iPA II
 - CP5-PLUS or iCC

CP5-PLUS Feature	V1.0	V1.1	V1.2
Continuous Data Monitoring	0	/	. /
Real-Time SoH log file	O		

CP5-Plus: Summary and Outlook

- Exceptionally reliable Pulse-Tube cryocooler:
 - Almost no maintenance required:
 - Estimated lifetime fans = 5 years
 - Lifetime at the level of the HPGe detector: unique in the market
- Exceptionally performant cryocooler:
 - Detector specifications same as LN₂-cooled system (even at lowest gamma energies)

- Integrate iPA II and cooler controller into the coldhead enclosure
 - ~26% Volume reduction / Reduced cabling / easier setup
- Lynx II is the envisioned central hub of the detector system
 - Leveraging the readily available detector-specific input

How can Mirion make HPGe life easier?

How? What is needed? 100% electric cooling solution Reliable / Low-vibration electric cryocooler (w/o impact on detector performance) Automate QA/QC program Access to SoH data Ensuring the detector is healthy Access to detector-specific settings and performance data (State-of-Health monitoring) Ensuring the detector will be healthy Smart algorithms (Predictive Maintenance) Access to detector-specific settings and performance data 💘 Automate set up procedure Basic use-case input Smart algorithms Integrated system (Future) Get rid of cabling

Annual Users' Conference

Thank you

