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Overview
HPGe Gamma Ray detectors are used in a variety of environments, from nuclear power plants to 
continuous environmental assays. Most of these use cases are sensitive to downtime, especially 
those operating continuously in remote locations. Predictive maintenance mitigates downtime through 
accurately predicting when service will be required, allowing for maintenance to be scheduled well in 
advance and for the optimal use of spares.
Predictive maintenance on HPGe detectors can be split into solving two subsets, cooler conditions and 
spectroscopic conditions. Cooler conditions can include outgassing, vacuum leakage, overheating, or 
partial warmups and can impact the performance or even cause a failure of the detector. Spectroscopic 
conditions include charge collection issues, microphonics, or incorrect pole zero, all which can affect the 
accuracy of the analysis. 

Figure 1 – B) Engineered live parameters which can identify 
failure modes.

Figure 1 – A) Visualization of Factory baseline data versus live 
data to identify detectors with poor state of health.

Abstract
Predictive Maintenance is the process of using State of Health (SoH) data to determine when 
systems require maintenance. Since maintenance may be planned, this approach reduces the 
amount of unplanned downtime experienced by a system when compared to traditional reactive 
maintenance. Through collecting SoH data from onboard sensors and collected spectra, predictive 
maintenance can be performed on HPGe detectors to accurately predict many failure modes and 
determine the urgency of field or factory servicing.
One failure mode of HPGe detectors is the cooler and through examining multiple parameters such 
as the Cooler Power, Ambient Temperature, and Crystal Temperature, the behavior of the cooler can 
be carefully monitored, and vacuum degradation issues can be swiftly and accurately identified. The 
algorithms developed can give advanced warning of these issues several months to years in advance 
of required servicing. This will allow for increased uptime of detectors, and flexibility in servicing that 
is difficult to accomplish with traditional reactive maintenance.
Engineered parameters extracted from spectral data can also be analyzed to determine and respond 
to the causes of decreased spectroscopic resolution. Common and engineered spectroscopic 
parameters are analyzed to determine the health of the signal chain. These parameters can identify 
low-end tailing, high-end tailing, and wings along with the changes of this behavior across various 
energies. Through this process, these parameters can identify problems in the signal chain from the 
crystal to the Multi-Channel Analyzer (MCA). 
Finally, factory data can be leveraged to detect deviations from baseline performance which can 
provide early warning indicators of these issues as well.

Through leveraging factory data, correlation measures, and artificial intelligence, detector issues 
can be accurately identified and the time until service is required can be accurately estimated. 
These algorithms cover many possible failure modes of a detector including a cryostat leak, 
outgassing, and peak distortions. These predictive maintenance algorithms developed at Mirion 
allow for increased flexibility and decreased downtime when servicing a detector.

Sensors and Data
The Cryo-Pulse 5 (CP5) Plus Detector Configuration (Figure 2) consists of multiple sensors including 
sensors for the cooler power, ambient temperature, crystal temperature, compressor temperature, and 
controller temperature.

Performance
To date, multiple issues have been identified in-the-field months before a detector failure was imminent. 
For an example, refer to the timeline in Figure 6, which is created by the algorithms previously 
outlined and predicts the time until service will be required for 45 detectors. With high probability, 
these algorithms can identify detectors which are likely to fail months to years into the future. These 
predictions have provided ample time for detector replacement, preventing downtime.
For another example, we can examine the historical predicted time until failure for an individual detector 
(Figure 4). This example illustrates how the confidence and stability of predictions increases over time, 
as data is gathered and analyzed.
Additionally, there are a variety of spectroscopic issues which can cause decreased detector 
performance (Figure 5). Through examining specially engineered spectral parameters across a range of 
energies, the cause of degraded performance can be accurately identified, and corrective action can be 
recommended without need for a field visit, or the detector being returned.

Algorithms
There are three types of algorithms which we can leverage for predictive maintenance: live data 
algorithms, factory data algorithms, and Artificial Intelligence (AI).
Live data algorithms use live streaming data to detect anomalies or systematic issues over days, weeks, 
or months. For an example, a change in ambient temperature will be closely reflected by an increase 
in the cooler power. Detectors which have cooler power more weakly correlated with the ambient 
temperature indicates a likely cooler issue (Figure 1B). This insight can be used to provide an estimate 
of the remaining time until service will be required on the detector.
Factory data algorithms use baseline testing data collected at the factory prior to shipment to detect 
deviations in cooler or detector performance. For example, comparing metrics such as the factory 
leakage current to the live leakage current (Figure 1A) can identify systematic increases from baseline 
performance which are strong indicators of detector issues.
Artificial intelligence models can be trained on the data collected to automatically identify problematic 
detector behavior, augmenting the performance of the previously outlined algorithms. As this model 
was trained on time series data, a Long Short-Term Memory Network (LSTM) was employed on hand-
labelled detector data shown in Figure 3.

Conclusions

Figure 5 -  Spectroscopic analysis algorithms which can predict degradation in 
resolution through analyzing multiple engineered spectroscopic parameters.

Figure 6 - The output of the analysis algorithms, which predicts the time until servicing is required for each detector using live data, 
factory baseline data, and artificial intelligence algorithm.

Figure 3 - An LSTM applied to multiple live parameters which accurately predicts the state of health of the detector 
from multiple input sensors.

Figure 4 - Historical predictions from the 
analysis algorithms.

Figure 2 – A diagram of the onboard sensors on a detector with a CP5 setup,  used to stream live data for analysis. 
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