
The 3NID (Neural Network for Nuclide Identification) project demonstrates the 
successful application of convolutional neural networks (CNNs) to gamma 
spectroscopy for homeland security (HLS) scenarios. Trained exclusively on 
Monte Carlo–simulated spectra, 3NID achieves:

•	 Superior identification performance compared to legacy classical 
algorithms, with significantly improved limits of detection and lower false 
alarm rates across a wide range of radionuclides and masking scenarios.

•	 Robust generalization to real-world measured data, validating the feasibility 
of AI-based nuclide identification in operational environments.

•	 Flexible integration into existing platforms.

In this project, various 3NID neural networks were developed using a popular machine 
learning framework, sharing a common structure as illustrated in Figure 2. The current 
network design was influenced by previous collaborations and similar applications 
found in literature, along with iterative testing of different configurations. The input data 
for 3NID consists of a 1024-channel spectrum.

The spectrum is processed through the first one-dimensional convolutional layer, where 
multiple filters are applied to the spectrum. Following this, a max pooling operation is 
applied, reducing the length of the filtered spectrum by half. Another convolutional layer 
with additional filters is then applied, followed by another max pooling layer.

The resulting values are flattened into a one-dimensional vector and passed to a 
dense layer. The output layer calculates independent probabilities for each of the 
radionuclides in the library. 3NID CNNs were trained with both raw and net (subtracted 
background) spectra separately, resulting in different networks for processing each 
type of spectrum, named 3NID-raw and 3NID-net respectively. During execution, 3NID 
returns probabilities for each possible output it was trained on. Values exceeding an 
adjustable threshold (usually 0.5) are considered identifications, and the associated 
radionuclide label and confidence level are reported on the user interface.

The feasibility study focuses on detection systems for the HLS market, addressing 
SNM (Special Nuclear Materials) illicit trafficking and “dirty bomb” radionuclides. 
Medical isotopes are the main false alarm drivers and must be separated from 
SNM. Masking scenarios involve SNM signals covered by medical or industrial 
radionuclides, requiring identification of both. The goal of 3NID is to outperform 
classical algorithms used in this field. Detection systems use mid-resolution 
scintillators like sodium iodide (NaI) or lanthanum bromide (LaBr3). This study 
focuses on SPIR-Pack, a backpack-type radiation detector with a NaI detector, 
intended for identifying a small number of radionuclides at a time.

The supervised training of a neural network involves iteratively adjusting network 
weights and parameters using input data to match the desired output. In this 
application, gamma spectra are used as input data, and the output identifies the 
radionuclides present in each spectrum. The output is represented as one-hot 
encoded vectors. Training continues until convergence, evaluated by loss and 
accuracy metrics. Part of the dataset is reserved for validation. After training, the NN’s 
weights and parameters are fixed for execution. High-quality input data, built from 
Monte Carlo simulations only, is essential for optimal performance. Training typically 
takes a few hours on an average laptop equipped with a GPU.

All Monte Carlo simulations were run with MCNP6 [1]. A simplified SPIR-Pack detection 
system was modeled above the ground and in front of a PMMA phantom mimicking 
the operator carrying the backpack. Simulated sources are positioned in front of the 
detector, at different distances, except for background which is originating either from 
the ground or from a side position. Various geometries were modeled to cover the 
expected use cases of SPIR-Pack, as detailed in the table below. Each radionuclide and 
geometry produce a gamma spectrum as an output (total number of MCNP simulations 
is 480 for the most complete dataset). These MCNP spectra are then processed to 
build training and testing datasets.
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Deep learning is a type of machine learning based on artificial neural networks (NN) 
in which multiple layers of processing are used to progressively extract higher level 
features from data. Its principle of operation mimics processes at work in the human 
brain, in a simplified way. When input data is injected, each layer of the NN, whose 
neurons (or nodes) are connected to the previous and next layers, successively 
performs specific mathematical operations, such as filtering in the case of a 
convolution layer, until the output layer is reached. Various parameters such as the 
weights of the inputs of all layers and values used in the mathematical operations are 
iteratively adjusted during the training process, making the neural network learn by 
itself from the provided input data and desired output, without any interaction from the 
operator. During execution, new input data (here, a gamma spectrum) is passed from 
layer to layer in the NN and an output is finally returned (here, radionuclide labels).
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Figure 1 - A few products from the Security & Search line.

Figure 2 - General scheme of the 3NID convolutional neural network.

Figure 5 - Benchmark results: limits of identification.

Figure 7 - Prototype and spectroscopy tool.

Figure 6 - Benchmark results (masking scenario: HEU + I-131). Left: 3NID, right: classical algorithm.

A broad test campaign was run in 2022 at IB3 and PNNL laboratories to assess 
3NID performance on measured SPIR-Pack spectra of SNM, medical and industrial 
radionuclides and benchmark it against classical algorithms. High counting statistics, 
single source spectra were acquired for long measuring times at controlled fluences 
in optimal laboratory conditions. Net signals were then extracted from these spectra 
and used to generate realistic spectra with variations of gain, measuring time, fluence 
and presence of other radionuclides to assess 3NID’s identification performance in 
operational conditions. Two main approaches are proposed: limits of identification 
on single radionuclide spectra, and masking scenarios involving combinations of 
radionuclides. 

Limits Of Identification On Single Radionuclides
To assess the limits of identification (LoID) of 3NID models and classical algorithms, for 
each measured radionuclide, 1000 spectra were generated with random time (usually 1 
to 15 seconds) and fluence in a specified shielding configuration. Graphs below show 
the true positive rate as a function of the integrated fluence (measuring time multiplied 
by fluence): each curve shows the mobile mean over 50 data points – each data point 
value is either 1 or 0 (resp. true positive or no true positive). False positives are counted 
separately and shown as text on the graphs. Chosen performance indicators are 
integrated fluences at 50% and 90% true positive rate, and false alarm rate. 

The 3NID algorithm, particularly the net model, generally outperforms the classical 
algorithm by requiring significantly lower fluences to achieve 50% and 90% true positive 
(TP) rates. The false alarm (FA) rates for 3NID-net are also lower than those exhibited 
by the classical algorithm, especially with MEDs. The performance of 3NID-net and raw 
models is comparable, with some variations depending on the source.

The spectrum datasets for training and testing 3NID were created using Monte Carlo 
simulations. To ensure high performance in field applications, the data must be 
realistic. Various treatments are applied to the simulated spectra, including random 
sampling of parameters. A background spectrum is built from six different NORM 
sources, with dose rates ranging from 20 to 300 nSv/h. Measuring times are sampled 
from a list of discrete values. Signal spectra are prepared for single radionuclides 
and combinations (including SNM masking scenarios with medical and industrial 
isotopes), with net counts sampled from high or low signal distributions. The final 
spectra include energy resolution adjustments, statistical sampling, and energy gain 
adjustments. Each combination of radionuclides generates 400 spectra, resulting in 
datasets of around 350,000 spectra.

Building Spectrum Datasets
3NID is currently running on the microcontroller of a prototype based on a 2’’x4’’ NaI 
detector and provides real time identification. It was also integrated into our desktop 
spectrum acquisition and visualization tool SMI.

Current Stage of Developments

Test and Benchmark Campaign

Figure 4 - A few spectra from the 3NID training dataset.

Type Geometry/source-to-
detector distance (m)

Shielding 
(mm lead) Radionuclides

Signal

1 0 to 200 All (HLS)

1 In vivo MED

10 0 All (HLS)

50 0 All (HLS)

Background
Ground n/a NORM

Side PMMA 80 mm NORM

Figure 3 - MCNP model of SPIR-Pack.
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Combined Identification On Masking Scenarios
For masking scenarios as described in TCS for backpacks [2], 5000 spectra were 
generated with a fixed measuring time of 60 seconds and random fluences in specified 
ranges for each isotope of the mix. Each spectrum is represented on graphs by a 
dot whose coordinates give the respective integrated fluences of the isotopes of the 
masking scenario. Color code is as follows – red: no TP; blue: 1 TP, green: 2 TP & 0 FA 
(perfect output), black: 1 or more FA. 

In masking scenarios for backpacks, the 3NID models generally outperform the classical 
algorithm. The 3NID models have very low false alarm (FA) rates and achieve better two 
true positive (2TP) rates in several cases. The 3NID-raw model stands out with almost 
no FA on all tested spectra. Overall, 3NID models demonstrate superior performance, but 
further analysis is needed for specific scenarios.

Introduction
Gamma spectroscopy is a proven and convenient non-destructive method 
allowing for the detection of radiological threats and the specific identification 
of radionuclides, of which spectrum features such as full energy peaks act as 
signatures. It is therefore consistently used in Homeland Security (HLS) scenarios 
by intervention forces or customs for border control. Mirion Technologies Security 
and Search (SnS) line offers a range of products responding to these use cases. 
Work done in the scope of the 3NID (Neural Network for Nuclide Identification) 
project aims at implementing CNN-based (Convolutional Neural Network) nuclide 
identification in these applications to improve their performance.

Automatic radionuclide identification has commonly been handled for decades 
by “classic” algorithms (i.e. non artificial intelligence (AI) based), whose 
performance typically depends on many internal and external factors, such as 
detector characteristics (dimensions, energy resolution), statistical value of the 
spectrum (number of counts, signal-to-noise ratio) or measurement geometry and 
configuration (source shielding, several sources with overlapping peaks). Recent 
breakthroughs in the field of AI and the success of CNN at pattern recognition, as 
well as object detection and facial recognition in imaging technologies, to which 
gamma spectroscopy can be easily related, lead both scientific research organisms 
and industrial actors to work on such applications. 


